If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+26x-7=588
We move all terms to the left:
3x^2+26x-7-(588)=0
We add all the numbers together, and all the variables
3x^2+26x-595=0
a = 3; b = 26; c = -595;
Δ = b2-4ac
Δ = 262-4·3·(-595)
Δ = 7816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7816}=\sqrt{4*1954}=\sqrt{4}*\sqrt{1954}=2\sqrt{1954}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{1954}}{2*3}=\frac{-26-2\sqrt{1954}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{1954}}{2*3}=\frac{-26+2\sqrt{1954}}{6} $
| 17y+9=17y+9 | | 27+p=16+12 | | 17y=9=17y+9 | | 5=9w−22 | | -x²+24x-80=64 | | c-(-9)=17 | | 0.05x+19=29.50 | | -12(11x-8x-4)=-168 | | 32+54=n+12 | | 8=3n−10 | | s-18/8=8 | | 14+x=10x+44 | | 17y+9=17y+ | | 123-x^2=10(x) | | 5x-7(-5x+1)=273 | | K/8+21=o97 | | 3q-2q-q+2q=16 | | e+12=22 | | 42/7=a | | 3x+4+x+90=180 | | -3+u=-9 | | 25=5+z | | x/100=12/14 | | 53+2x=7(-x=3)-40 | | 3a+21=7-7a | | p-19=5 | | 1v-1=6 | | -48÷3=x | | 3r-5=2 | | 25=-5t-5 | | 19=x/2+5 | | 12=f-14 |